Exercise 30

(a) Evaluate the line integral $\int_{C} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}(x, y, z)=x \mathbf{i}-z \mathbf{j}+y \mathbf{k}$ and C is given by $r(t)=2 t \mathbf{i}+3 t \mathbf{j}-t^{2} \mathbf{k},-1 \leq t \leq 1$.
(b) Illustrate part (a) by using a computer to graph C and the vectors from the vector field corresponding to $t= \pm 1$ and $\pm \frac{1}{2}$ (as in Figure 13).

Solution

With this parameterization in t, the line integral becomes

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{-1}^{1} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t \\
& =\int_{-1}^{1}\langle x(t),-z(t), y(t)\rangle \cdot \frac{d}{d t}\left\langle 2 t, 3 t,-t^{2}\right\rangle d t \\
& =\int_{-1}^{1}\left\langle 2 t, t^{2}, 3 t\right\rangle \cdot\langle 2,3,-2 t\rangle d t \\
& =\int_{-1}^{1}\left[(2 t)(2)+\left(t^{2}\right)(3)+(3 t)(-2 t)\right] d t \\
& =\int_{-1}^{1}\left(4 t-3 t^{2}\right) d t \\
& =\left.\left(2 t^{2}-t^{3}\right)\right|_{-1} ^{1} \\
& =2\left[1^{2}-(-1)^{2}\right]-\left[1^{3}-(-1)^{3}\right] \\
& =-2 .
\end{aligned}
$$

Below is a plot of the vectors from the vector field corresponding to $t= \pm 1$ and $t= \pm \frac{1}{2}$.

